53 research outputs found

    Mechanical and microstructural investigations of tungsten and doped tungsten materials produced via powder injection molding

    Get PDF
    The physical properties of tungsten such as the high melting point of 3420°C, the high strength and thermal conductivity, the low thermal expansion and low erosion rate make this material attractive as a plasma facing material. However, the manufacturing of such tungsten parts by mechanical machining such as milling and turning is extremely costly and time intensive because this material is very hard and brittle. Powder Injection Molding (PIM) as special process allows the mass production of components, the joining of different materials without brazing and the creation of composite and prototype materials, and is an ideal tool for scientific investigations. This contribution describes the characterization and analyses of prototype materials produced via PIM. The investigation of the pure tungsten and oxide or carbide doped tungsten materials comprises the microstructure examination, element allocation, texture analyses, and mechanical testing via four-point bend (4-PB). Furthermore, the different materials were characterized by high heat flux (HHF) tests applying transient thermal loads at different base temperatures to address thermal shock and thermal fatigue performance. Additionally, HHF investigations provide information about the thermo-mechanical behavior to extreme steady state thermal loading and measurements of the thermal conductivity as well as oxidation tests were done. Post mortem analyses are performed quantifying and qualifying the occurring damage with respect to reference tungsten grades by metallographic and microscopical means

    Effect of boron doping on grain boundary cohesion in technically pure molybdenum investigated via meso-scale three-point-bending tests

    Get PDF
    Molybdenum has numerous advantageous functional and high-temperature properties. However, plastic deformation as well as structural applications are limited due to a propensity for brittle, intercrystalline failure, especially at low temperatures. It is well known that oxygen segregations have a detrimental effect, whereas it is assessed that carbon and/or boron have a beneficial effect on grain boundary cohesion. An advanced approach for the improvement of these interfaces is segregation engineering, e.g. the addition of cohesion enhancing elements segregating to the grain boundaries. To investigate early stages of crack formation, three-point bending tests on recrystallized commercially pure and boron micro-doped molybdenum were conducted between −28 \ub0C and room temperature. The tensile-loaded top surface of the specimens was examined post-mortem close to the final fracture area via scanning electron microscopy. The occurring separations of grains are investigated for distinct features and the chemical composition of the interface is complementary measured by atom probe tomography

    Evolution of nano-pores during annealing of technically pure molybdenum sheet produced from different sintered formats

    Get PDF
    Molybdenum is a refractory metal with no phase transformation in the solid state and a high melting point. It is therefore an excellent structural material for various high temperature applications. Especially in this field of operation, significant creep resistance is essential. To achieve this, a microstructure with grains in the range of millimeters is desired. However, as demonstrated in the present study, the onset temperature for secondary recrystallization, which would lead to a beneficial grain size, is among other things dependent on the initial dimensions of the sintered part. One possible reason for the different microstructural evolutions is the influence of residual pores in sub-micrometer size. Sheets were thus fabricated via three different production routes employing the same initial Mo powder to exclude chemical variation as an influencing factor. The samples were investigated by in-situ small-angle X-ray scattering at a synchrotron radiation source with two different heating rates. Additionally, selected annealed samples were studied ex-situ with high energy X-rays. The apparent volume fraction of pores is compared to a volatilization model for the vaporization of typical accompanying elements and the induced thermal expansion

    Antihyperalgesia by α2-GABAA Receptors Occurs Via a Genuine Spinal Action and Does Not Involve Supraspinal Sites

    Get PDF
    Drugs that enhance GABAergic inhibition alleviate inflammatory and neuropathic pain after spinal application. This antihyperalgesia occurs mainly through GABAA receptors (GABAARs) containing α2 subunits (α2-GABAARs). Previous work indicates that potentiation of these receptors in the spinal cord evokes profound antihyperalgesia also after systemic administration, but possible synergistic or antagonistic actions of supraspinal α2-GABAARs on spinal antihyperalgesia have not yet been addressed. Here we generated two lines of GABAAR-mutated mice, which either lack α2-GABAARs specifically from the spinal cord, or, which express only benzodiazepine-insensitive α2-GABAARs at this site. We analyzed the consequences of these mutations for antihyperalgesia evoked by systemic treatment with the novel non-sedative benzodiazepine site agonist HZ166 in neuropathic and inflammatory pain. Wild-type mice and both types of mutated mice had similar baseline nociceptive sensitivities and developed similar hyperalgesia. However, antihyperalgesia by systemic HZ166 was reduced in both mutated mouse lines by about 60% and was virtually indistinguishable from that of global point-mutated mice, in which all α2-GABAARs were benzodiazepine insensitive. The major (α2-dependent) component of GABAAR-mediated antihyperalgesia was therefore exclusively of spinal origin, whereas supraspinal α2-GABAARs had neither synergistic nor antagonistic effects on antihyperalgesia. Our results thus indicate that drugs that specifically target α2-GABAARs exert their antihyperalgesic effect through enhanced spinal nociceptive control. Such drugs may therefore be well-suited for the systemic treatment of different chronic pain conditions
    • …
    corecore